Linear Coherent Bi-Clustering via Beam Searching and Sample Set Clustering

نویسندگان

  • Yi Shi
  • Maryam Hasan
  • Zhipeng Cai
  • Guohui Lin
  • Dale Schuurmans
چکیده

We propose a new bi-clustering algorithm, LinCoh, for finding linear coherent bi-clusters in gene expression microarray data. Our method exploits a robust technique for identifying conditionally correlated genes, combined with an efficient density based search for clustering sample sets. Experimental results on both synthetic and real datasets demonstrated that LinCoh consistently finds more accurate and higher quality bi-clusters than existing bi-clustering algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Coherent Bi-cluster Discovery via Beam Detection and Sample Set Clustering

We propose a new bi-clustering algorithm, LinCoh, for finding linear coherent bi-clusters in gene expression microarray data. Our method exploits a robust technique for identifying conditionally correlated genes, combined with an efficient density based search for clustering sample sets. Experimental results on both synthetic and real datasets demonstrated that LinCoh consistently finds more ac...

متن کامل

Linear Coherent Bi-cluster Discovery via Line Detection and Sample Majority Voting

Discovering groups of genes that share common expression profiles is an important problem in DNA microarray analysis. Unfortunately, standard bi-clustering algorithms often fail to retrieve common expression groups because (1) genes only exhibit similar behaviors over a subset of conditions, and (2) genes may participate in more than one functional process and therefore belong to multiple group...

متن کامل

Sparse Learning Based Linear Coherent Bi-clustering

Clustering algorithms are often limited by an assumption that each data point belongs to a single class, and furthermore that all features of a data point are relevant to class determination. Such assumptions are inappropriate in applications such as gene clustering, where, given expression profile data, genes may exhibit similar behaviors only under some, but not all conditions, and genes may ...

متن کامل

A Novel Local Learning-Based Approach with Application to Breast Cancer Diagnosis

In this paper, we introduce a new local learning based approach and apply it for the well-studied problem of breast cancer diagnosis using BIRADS-based mammographic features. To learn from our clinical dataset the latent relationship between these features and the breast biopsy result, our method first dynamically partitions the whole sample population into multiple sub-population groups throug...

متن کامل

Extraction of Respiratory Signal Based on Image Clustering and Intensity Parameters at Radiotherapy with External Beam: A Comparative Study

Background: Since tumors located in thorax region of body mainly move due to respiration, in the modern radiotherapy, there have been many attempts such as; external markers, strain gage and spirometer represent for monitoring patients’ breathing signal. With the advent of fluoroscopy technique, indirect methods were proposed as an alternative approach to extract patients’ breathing signals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Math., Alg. and Appl.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012